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An orthogonalization procedure for the transformation of finite nonorthogonal 
coordinates to an equivalent finite set of orthogonal coordinates is described. The 
procedure involves the direct solution of a series of ‘exact’ matrix equations and is 
independent of the amount of shear or nonorthogonality of the original coordinates. 
The method may be applied to the solution of complex boundary value problems and 
generally at each timestep to the Lagrangian solution of multidimensional initial value 
problems. 

1. INTRODUCTION 

The use of generalized orthogonal coordinates in differential analysis has been 
of widespread importance. In simulations on the computer, however, their 
application has been very limited, mainly because the problem of mapping one 
orthogonal space to another is a difficult partially unsolved and nonlinear problem. 
This paper describes an “exact” method of constructing generalized discrete 
orthogonal coordinates, suitable for use in digital computation. 

A common example of the need for such orthogonal coordinates occurs in the 
Lagrangian representation of fluid and magneto-fluid flows. In one space- 
dimension, a point Lagrangian method is frequently used with success [9, 121. 
The extension of such a point Lagrangian method to two- or three-dimensional 
problems has on the whole been unsuccessful, since sheared flow rapidly induces 
a nonorthogonal, distorted and complex mesh, on which the physical equations of 
interest are difficult to represent accurately. Hirt and Amsden [8] have suggested 
an inexact prescription which tends to drive the mesh towards orthogonality. 

These difficulties arise since the concept of a point Lagrangian method, appro- 
priate in one space-dimension, does not extend to two or more space-dimensions. 
Rather than defining a set of Lagrangian points in two dimensions, it is appropriate 
to define a contour along which a state variable of interest,f, does not alter. Thus, 
advection, or Lagrangian motion along the contour off, does not alter .f and the 
contour need only be advected or moved in a Lagrangian manner perpendicular 
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to the contour. The advantages of an orthogonal mesh may therefore be obtained, 
provided that, at each timestep, we may construct the lines orthogonal to the 
contours. In three dimensions we may define Lagrangian surfaces. 

Elsewhere, orthogonal coordinates are important in many boundary-value 
problems and in simulations where the mesh needs to be related to complex 
boundaries [7 1. 

We may define the mapping problem in two dimensions as follows. Let x and y 
be orthogonal coordinates in the domain R, so that the set of points r = (x, v) 
define what we shall call the “real” or laboratory space. Let ~1 and j be non- 
orthogonal coordinates defined in the domain J’. We shall assume that there is 
a one-to-one correspondence between R and P, such that for each point p = (,u, j) 
in I’, there exists a unique point r = r(p, j) in R. Then, given T = r(p., j), we are 
required to determine r = r(i, j) where i and j are orthogonal coordinates. The set 
of points 2 = (i, j) in the domain L defines what we shall call the “logical” or 
natural space. 

Given boundary conditions on the surface S of R, the problem is uniquely 
defined. In particular, we shall consider the “closed” problem in which the 
boundary S corresponds to the line j = 1. The boundary conditions then specify, 

rs = r(i, I), (1) 

for all i. For this case, the two orthogonal spaces R and L are represented schemat- 
ically in Figs. (1) and (2). 

We shall here devise an orthogonalization procedure whereby, given any set of 
nonorthogonal coordinates, the corresponding orthogonal coordinates may always 
be constructed. In Section 2, the equations for orthogonal coordinates are discussed 

FIG. 1. The ‘real’ space R. The region of interest is bounded by rS. Constant values of the 
functions i and j map out orthogonal lines. 
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FIG. 2. The ‘logical’ space L. The line j = 1 corresponds to the boundary rs on 
aries at i = 1 and i = Z are periodic. 
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in the differential case and it is shown that the above specification uniquely defines 
a set of orthogonal coordinates, which are in principle readily soluble. Unlike 
the differential case, only a finite set of points in R are defined in the mesh problem 
and the meaning of orthogonality needs to be considered. In Section 4, matrix 
equations which relate the positions of i-points on each pair of j lines are obtained 
and the exact method of solution is outlined. The procedure is summarized in 
Section 5 and a number of illustrative solutions using the method are shown in 
Section 6. 

2. ORTHOGONALITY IN THE CONTINUOUS DOMAIN 

We shall consider the (i, j) lines in the domain R (Fig. 3): 

i = i(x, y); j = Ax, v>. (2) 

If i and j are to be orthogonal, the functions i and j must satisfy (Fig. 3), 

@i/ax), = cos d/h’, 

(S/Q), = sin O/hi, 

(aj/ax), = -sin e/hi, 

(iYj/+), = cos 8/hj 
(3) 

where 8 = 0(x, JJ) is the angle between the unit vectors ei and e, in R. hi and hj are 
the usual scale factors defined by 

dr2 = (hi di)2 + (hj dj)2 

581/13/4-3 
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FIG. 3. Lines of constant i and constant j orthogonal in R. 

or, according to Eqs. (3), 

I/@“)2 = (&/ax)2 + (ai/ay)2, 

l/(/Q)” = @j/ax)2 + (aj/ay)z. 
(4) 

By eliminating hi in Eqs. (3), a first-order equation in i(x, y) is obtained: 

(&px) - cot e(ai/ay) = 0. (5) 

In the differential problem defined in Section 1, 0 = B(x, y) is defined by the 
nonorthogonal coordinates r = r&j). Since i(x, JJ) is known on the bounding 
surface rS, an integration of Eq. (5) for each point i on rs will trace out a contour 
of i, solving the mapping problem. 

3. DISCRETE ORTHOGONAL COORDINATES 

On a finite mesh, the function 0(x, y) is not known at all between the given finite 
set of contours j, while on the contour j it may only be approximated. We may 
eliminate 0 in the orthogonal equations (3) to obtain two elliptic equations for the 
functions i = i(x, y) and j = j(x, JJ): 

(7) 
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These are nonlinear equations since hi and N are functions of i and j. Barfield [2] 
has considered this problem and approximated the solution by linearizing the 
equations, assuming the function hi/hj is constant everywhere. In general, this 
assumption is not reasonable, particularly when applied to the whole mesh. 
Godunov and Prokopov [6] have used a similar technique, assuming an optimized 
constant value hi//+. 

To determine i and thus obtain the orthogonal coordinates, we wish to solve 
Eq. (6) between each pair of j lines in sequence. In general without prescribing 
0(x, JJ) or the functional form of hi/N, Eqs. (6) and (4) admit of an infinite set of 
solutions. We shall therefore seek conditions on the function hi//+ which establish 
a unique and unambiguous correspondence between the i-points on each pair of 
j-lines. This may be achieved by demanding that no sources or sinks for i exist 
between each pair of j-lines. 

The path of a constant i-line is found by following the direction of the vector Vj. 
A vector of arbitrary magnitude in this direction is: 

k = Wj), (8) 

where q(j) is any continuous function with continuous first and second derivatives. 
It follows that the sources u of i-lines are defined by, 

V*k=a. 

Thus the condition for a unique correspondence between the i-points on each pair 
ofj-lines is that the vector k be divergence free: 

or, 
(dq/dj) Vzj + (d”q/dj2)(Vj)” = 0 

V”j and I Vj ( are defined by Eqs. (7) and (4): 

vzj = (1 /hfhj)(a/aj)(hyh’), 

1 Vj 1 = l/N. 

Substituting these expressions into Eq. (9), we obtain: 

dq a h" -- _ 
I I dj aj hj 

+!!3&=0 
dj2 h' ' 

or, 
a dq hi 

aj I I 
-7 = 
dj h3 0, 

(9) 

(10) 

(11) 
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which has the general solution: 

(dq/L$)(hi/hi) = f(i). 

Since q is a function only ofj, hi/N must have the functional form: 

hi/hj = f(i) g(j). (12) 

This is the condition on hi/N which we seek and which establishes a unique 
correspondence between the i-points on each pair ofj-lines. An interpretation of 
the arbitrary function g(j) is that it alters only the density or relative placement of 
the j-lines between j and j + 1 without varying i. 

It is therefore assumed that between each pair of j-lines (but not on thej-th line), 
hi/N has the form of Eq. (12). It is to be noted that f(i) and thus hi/N changes 
discontinuously across each j line of the mesh. The form (Eq. (12)) for hi/hi is 
inserted in Eq. (6) for the function i: 

and using Eqs. (3) to eliminate the right-hand side: 

A similar equation in j(x, JJ) and involving g(j) is equally obtained, Thus, if the 
function p = p(i) is defined: 

f(i) = dpjdi; (15) 

then, according to Eq. (14), p (and, equally, q) satisfies Laplace’s equation: 

vp = 0, (16) 

v2q = 0. (17) 

Now hi/hi is a positive definite function (Eqs. 4). Along the linej = constant, g is 
a constant, and from Eqs. (12) and (15), 

dp/di = (hi/h3/g. (18) 

If g is positive, it follows that along the line j = const., p is a monotonically 
increasing function of i. If g is negative, p is a monotonically decreasing function 
of i. The form of the function p between each pair of j lines is drawn in Fig. (4). 
Thus for each value of i, there corresponds a unique value of p. It follows that if 
Laplace’s equation (16) is solved for p between each pair of lines, for each point i 



DISCRETE ORTHOGONAL COORDINATES 489 

FIG. 4. Representation of the function p(i) between the lines j and j + 1. p is a monotonically 
increasing function of i, with period dp :p(i) = dpfi(i) + ndp, where n is an integer. For each 
value of i, there corresponds a unique value of fi. 

on j there corresponds a unique value p with which again the point i on the line 
j + 1 may be associated. All the i points on the line j + 1 may therefore be deter- 
mined and the procedure continued to the next pair ofj lines j + 1 and j + 2. 

4. ORTHOGONALIZATION BY THE SOLUTION OF A SEQUENCE OF 
MATRIX EQUATIONS 

According to the previous sections, we may orthogonalize the nonorthogonal 
mesh r = r&J’) by considering pairs of adjacent j lines (Fig. 5) in a sequence of 
J - 1 operations. At the j-th step, the points i on j are known r(i, j) and the 
nonorthogonal points ~1 on j + 1 are known r(p, j + 1). We wish to determine 
r(i, j + 1). Laplace’s equation for p = p(i) is to be satisfied in the space between 
j and j + 1. The boundary conditions are of the Neumann type: 

ap/an = (l/V) ap/aj = 0, (19) 

where n is the direction normal to the boundaries on j and j + 1. The region is not 
simply connected and a branch cut must be introduced. 

Applying Green’s theorem [4] for Laplace’s equation (16) to a point on the 
contour C of a closed two-dimensional region, an integral equation for p is 
obtained: 

’ 2 dr’. (20) 
( r - r’ 1 an 



POTTER AND TUTTLE 

FIG. 5. Pairs of adjacent j lines are considered in sequence. The points specifying the line j 
lie on the orthogonal lines i. By solving Laplace’s equation for p(i) between j and j + 1, the i 
points on the line j + 1 can be identified. A branch cut B is introduced between j and j + 1 to 
obtain a simply connected region. 

Using the boundary conditions (Eq. (19)), the second term on the right-hand side 
vanishes on the boundaries j and j + 1. Equally the contributions to the second 
term induced on each side of the branch cut B are exactly equal and opposite, 
no matter where the branch cut is taken: 

aP 3P 
an B+E = - an gvr’ (21) 

when E is vanishingly small. It is therefore only the first term on the right-hand side 

6r’ go. p log J- = 6r’cos e 
IL-Cl -pi- 

E 6# 

FIG. 6. The angle subtended by the arc Sr’ as observed by the point r. 
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of Eq. (20) which remains. It is to be noted that the coefficient of p in this term 
may be written as a perfect differential: 

(a/an){log(l/\ r - r’ I)} 6r’ = -Sr’ cos O/l r - r’ /, 

= -sq$ 
(22) 

where 84 is the angle, subtended by the arc 6r’ from the point r (Fig. 6). Applying 
this notation to Eq. (20), we may determine p at the points i on the line j and p at 
the points p (nonorthogonal) on the line j + 1 according to the following 
equations (Fig. 7): 

(23) 

d& is the infinitesimal angle subtended by the boundary at the k-th point from 
the i-th point. On either side of the branch cut, 

and 
(25) 

P@ + 4 = P(B - 4 + AP, (26) 

where dp is constant along any branch cut. It follows that the second two terms in 
Eq. (23), for example, reduce to: 

In Unite form, the integral equations (23) and (24), applied to a finite set of points 
along the lines j and j + 1, become matrix equations: 

on line j: 

on line j + 1: 

I I 
pi = C -Lc~k + C &pv + AP G 7 

k-1 "4 

P,, = i Kk~lc + i L:,P~ + AP G 3 
k-1 v=l 

(28) 

(29) 
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(a) 

FIG. 7. The matrix equation for ~3 is defined in terms of angles. (a) The matrix elements must 
be defined so as to conserve angles, which may be achieved by defining intermediate points 
(crosses). (b) The angles subtended from each point by the branch cut, B, define the known 
vector in the matrix equation. 

where we have used an indexing notation to denote each point i and p. The matrix 
element L, for example is the angle relative to 7~ subtended by the arc at the point k, 
by the point i on the line j (Fig. 7). The matrix element M,, is the angle relative 
to rr subtended by the arc at the point v on the line j + 1 by the point i on the line j, 
and an equivalent meaning applies to the other matrix elements. The vector elements 
ci and c, are the angles relative to 7r subtended by the branch cut at the points i 
and ~1 respectively (Fig. 7). 

We may rewrite Eqs. (28) and (29) as a matrix equation: 

(I- A)@ = c, (30) 
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where the vectors fi = {pJAp, p,/Ap} and c = {ci , c,} are of length 21 and the 
matrix A, of dimension 21 x 21, has the form: 

(31) 

In the finite mesh case, the matrix A must be defined to have the same properties 
as the angles in the integral equations (23), (24), namely, 

for all i: 

f d&i = n, 
5 

I 
d+vi = 0. 

5t1 

(32) 

(33) 

if d&c,, = 25-y (34) 
i 

I d&* = -rr. (35) 
j+l 

To reflect these properties, the matrix elements A must be defined to conserve 
angles (Fig. 7). This may be achieved by defining intermediate points (crosses) 
midway between the points i and i + 1 and between p and p+ 1. Thus, by 
conserving angles, it is clear that the partitioned matrices of A have the properties 
(Fig. 7): 

all i: 

i MS, = 0, (37) 
"4 

“&L = -1. (39) 

Equations (36) and (39) result from observing that a radius vector from a point 
on a closed curve to every other point on the curve sweeps out an angle f V, the 
sign depending on whether the acute or obtuse angle is taken. The curve j + 1 is 
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entirely enclosed within the curve j so that a radius vector from a point on j to 
every other point on j + 1 sweets out a zero angle, while a radius vector from a 
point onj + 1 to every point onj sweeps out an angle 27f. 

From the relations (Eqs. (36), (37), (38), and (39)), it follows that the vector 
e = {I>, constructed of all elements equal to one, is an eigenvector of the matrix A, 
with eigenvalue 1. Accordingly, the matrix (Z - A) is singular, so that Eqs. (30) 
may not be solved. This is the matrix consequence of the well-known fact that 
Laplace’s equation (16) with Neumann boundary conditions only has a solution 
up to an arbitrary constant. The constant value in p is not relevant to our argument 
and we may readily specify: 

ai;;,, = 0. w 

Thus, for example, solutions may be obtained by eliminating the first row in the 
matrix equation (30) and defining, 

A,i = 26,, , 

Cl = 0. 
(41) 

In practice, a “better-conditioned” matrix equation is obtained by adding the 
null vector Ae to the left-hand side of the matrix equation (30). I - A is no longer 
singular and solutions for fi may readily be obtained by either exact or iterative 
methods. In the solutions illustrated (Sect, 6), the Gauss elimination method is 
used [5]. It is to be noted that, for the first I elements of the vector @ (dimension 2Z), 
fi is monotonically increasing and lies in the range 0 to 1. 

The solution for fi allows the line r(p, j + 1) to be reconstructed by interpolation 
so as to be defined on the orthogonal space L, namely, r(i, j + 1). For each point i 
on j, there exists a value ji . By finding the corresponding value on the line j + 1 
between the pair of points Z.L and ZJ + 1, say, the point r(i, j + 1) may be con- 
structed by interpolation. 

Other properties of the mapping of R to L are immediately determined by the 
orthogonalization procedure. From Eqs. (12) and (15), the aspect ratio of the mesh 
is accurately found, 

hf/N = Ap g(j)(a”/di), (42) 

where the “constant” Ap g(j) is readily determined around a constant j line. 
The area elements and length elements of each cell are defined in the usual way: 

hW = 3(x, y)/a(i, j), (43) 

h”* = (axpi) + @#i)2, (44) 

K” = (8x/aj)2 + (a~@j)~. (45) 
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5. SUMMARY OF THE ORTHOGONALIZATION PROCEDURE 

The prescription for generating the orthogonalized mesh is summarized: 

is specified on the boundary (the line j = 1)-the boundary 

(b) In matrix form, Laplace’s equation for the function j is solved between 
the lines j = 1 and j = 2. 

(c) For each point i on the line j = 1 there exists a unique value of #. The 
points r(p, 2) on the line j = 2 are interpolated as a function of fi until each point 
has a value of j which corresponds precisely to the values of j for each i point 
on the line j = 1. The new points r(i, 2) now lie on contours of i. 

(d) The i orthogonal contours have now been marched from the j = 1 line 
to cross the j = 2 line at the points specifying the j = 2 line. The whole procedure 
is now repeated for the pair of lines j = 2 and j = 3, and for subsequent pairs. 

6. APPLICATION OF THE METHOD 

Solutions from the application of the method are illustrated in Figs. (8) and (9) 
for meshes of dimension 8 x 32. In Fig. (8a), the lines j = const are a set of 
concentric ellipses while the lines of constant p (numbered 1 to W) are clearly 
nonorthogonal. The orthogonalized solution is illustrated in Fig. (8b). The method 
of solution in no way relies on an expansion and is therefore quite independent of 
the extent of the initial nonorthogonality. In Fig. (lo), the sequence of steps which 
orthogonalize each pair of j lines in turn, from the lines j = 7 to the line j = 1, is 
illustrated. It is clear here that the method is quite independent of the extent of the 
shear in the original coordinates. 

The amount of central processor time used depends predominantly on the 
solution of the set of J - 1 matrix equations (30) which are each of dimension 21. 
Since the exact Gauss elimination method has been used [5], the total number of 
arithmetic operations required in solving the problem is of the order 
w3w)3(J - 0, or in principle, less than one second on, say, the CDC 6600. 
In practice, the solutions illustrated used 3 seconds of central processor time. Since 
the matrices (Eq. 30) concerned are diagonally dominant, an iterative method for 
the solution of the matrix equations (30) will provide an even faster solution. Using 
cylindrical coordinates for which the solutions are known (r, @, an accuracy of 
one part in lo* on the CDC 6600 has been obtained. 
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FIG. 8. (a) Nonorthogonal lines. The lines of constant j are a set of concentric ellipses. (b) 
The orthogonalized solutions. The j lines are now defined by points lying on orthogonal lines. 
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FIG. 9. Orthogonal solutions (b) produced from the nonorthogonal lines (a). The boundary 
here is taken as J = 8. 
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FIG. 10. The orthogonalization procedures involve a sequence of J - 1 operations. Starting 
at the boundary (J = 8), pairs of j lines are considered in sequence, each inner j line being re- 
defined on points lying along constant i lines. The method is independent of the amount of shear 
in the given nonorthogonal coordinates. 

7. DISCUSSION 

Generalized orthogonal coordinates for the simulation of problems on the 
computer have a very wide application. In the first instance, the method of 
constructing orthogonal coordinates described here may be applied to complex 
boundary value problems and to Eulerian coordinates in time-dependent 
problems [7]. 

The use of generalized orthogonal coordinates simplifies both the logic of 
indexing arrays and the difference formulation of boundary conditions. In a 
numerical simulation, the natural coordinates in the computer are the indices by 
which arrays are addressed. These indices define an “indexing mesh” of points. 
Fetching, storing, and the application of boundary conditions is most simple when 
the indexing mesh is rectangular. However, it is only in the simplest multi- 
dimensional problems that the spatial boundaries can be defined along the 
rectangular boundaries of a known coordinate system. Thus in an awkwardly 
shaped region, the logic in indexing an Eulerian mesh which does not match the 
boundaries can become excessively complex. In addition, boundary conditions are 
difficult to apply accurately in difference form, in such a region. 

With any suitable a priori choice of one set of lines (the j-lines), the procedure 
described here will determine the orthogonal i-lines, and any awkwardly shaped 
domain will thereby be mapped onto a rectangular orthogonal mesh. Thus, if 
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Eulerian codes are written in terms of generalized orthogonal coordinates such 
that the real space R is a variable r = r(i, j), to be determined according to the 
boundaries of the problem at hand, considerable generality in the application of 
such codes can be achieved. 

Alternative methods for determining Eulerian orthogonal coordinates in this 
class of problem have been devised by Godunov and Prokopov [6, 71 and by 
Batield [l, 21. In the procedures developed by these authors, a variational 
technique is used to obtain elliptic difference equations, the solutions of which 
define an optimised quasiorthogonal mesh which is related to the boundaries 
of the problem at hand. In these methods, however, the aspect ratio of the mesh, 
hi//+, is not defined self-consistently as a variable everywhere on the mesh. 

The second major application of the procedure described here is in the use of 
orthogonalized Lagrangian coordinates, particularly in time-dependent fluid 
problems. Conventionally, in each time step of a multidimensional Lagrangian 
solution, advection creates a nonorthogonal mesh. As in the representation of 
collisionless fluids in phase-space [3], a class of “waterbag” methods may be 
envisaged whereby the system is represented by a set of contours of the functions 
of interest. An orthogonal mesh can therefore be defined, and calculated according 
to the direct method described here, without altering the positions of the contours, 
or one of the sets of lines (the j-lines). Thus, for example, by defining contours of 
vorticity, solutions have been obtained for incompressible hydrodynamic phenom- 
ena [lo]. The authors have also applied such a technique to contours of the 
magnetic vector potential (the field lines) in two-dimensional magnetohydro- 
dynamic problems [I 1l.l 

In summary, given a nonorthogonal, finite mesh, a procedure has been developed 
which defines and determines a unique orthogonal mesh. In two dimensions this is 
achieved by keeping one set of lines (the j-lines) fixed while varying the other set. 
The method is direct, in the sense of avoiding iteration, and is simple to apply. 

The procedure for open-ended lines is entirely analagous. In lieu of the contri- 
bution from the branch-cut, however, sources at the two open ends of the lines give 
rise to the constant vector c (Eq. (30)). 
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